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1. INTRODUCTION

In spectral methods, the solution of a partial differential equation is represented by a

truncated expansion of eigenfunctions of a singular Sturm-Liouville problem. This choice is

responsible for the superior approximation properties of spectral methods. This is, of course,

most evident for problems possessing smooth solutions in which case the series expansion

converges faster than any inverse power of n as n --_ oo. This phenomenon is known as

spectral convergence. The method of calculating the expansion coei:Ficients determines the

type of spectral approximation: Galerkin, tau, or collocation. Only collocation methods are

considered in this paper since they are applicable to a wide class of problems.

Spectral methods are most easily applied to problems defined in rectangular or circular

regions in which case Chebyshev or Fourier series, respectively, are appropriate. However,

the natural choices of expansion functions for a problem defined in an irregular geometry

are unwieldy and inefficient to use and need to be computed for each new irregular region

[12]. There are two ways of overcoming these difficulties, namely, mapping and patching [2,

4, 12].

The mapping technique involves transforming the irregular region into a simpler one

by using a coordinate transformation. Spectral methods can then be applied in the simpler

region using standard expansion techniques [12, 16]. The patching method divides the region

into a number of simpler subregions or elements. A spectral approximation to the solution of

the differential equation is sought within each element. The representations are patched by

imposing continuity conditions across interfaces. This results in a coupling of the expansion

coefficients in contiguous elements. Spectral domain decomposition methods combines the

flexibility of the finite element method with the superior approximation properties of the

spectral method [3, 13, 14].

A number of different spectral domain decomposition techniques have appeared in the

literature [3, 5, 7, 10, 13, 14]. The main differences between these variants lie in the choice

of trial functions and the treatment of the continuity conditions at element interfaces. In

the spectral element method [13] conforming elements are used and C 1 continuity across the

interfaces is achieved implicitly through a variational principle. The global element method

[3] uses trial functions which are nonconforming. A modified functional is used to ensure that

the interface continuity conditions are satisfied. In the present paper, we advocate the use

of conforming spectral domain decomposition techniques and describe a collocation strategy

for achieving this.

As our test problem, we consider Stokes flow through an abruptly contracting channel

with contraction ratio 1 : a. A conforming spectral domain decomposition of this geometry

divides tl_e flow region into three rectangular sem_-infln_te subd0ma_ns With common point

(0, a) as shown in Figure 1. In previous work [5, 15], the authors consider nonconforming sub-

regions because of their ease of implementation (see Figure 2). Although this strategy works

well for the Stokes problem [5], a lack of interface continuity appears for the Navier-Stokes

problem [6] at moderate values of the Reynolds number, eventually causing the method to

break down. The resulting spectral approximations are not pointwise continuous across the

subregion interfaces. In thls paper, we alleviate any possibility of discontinuous solutions and

normal derivatives across the interfaces by using a carefully constructed collocation scheme.

Efficient direct methods for solving the collocation equations in rectangularly decompos-



able domainsare describedin [15]for the two subdomainexample. This method, which is
basically a block Gauss method, is applied here to efficiently invert the coefficient matrix.

The matrices resulting from a spectral collocation discretization assume a block structure

in which the non-zero blocks are full. Economically viable solution techniques need to take

advantage of this matrix structure.

In Section 2, we define the Stokes problem in the channel contraction and derive the

boundary conditions in terms of the stream function. In Section 3, we describe a domain

decomposition of the fl0w region and the spectral approximation within each subregion.

The collocation strategy which gives pointwise C 1 continuity of the stream function across

the subregion interfaces is developed in Section 4. The solution of the spectral collocation

equations using the capacitance matrix technique is described in Section 5. Numerical results

are presented in Section 6 and concluding remarks are made in Section 7.

2. The Governing Equations

The governing equations for the planar inertialess flow of an incompressible Newtonian

fluid assume the mathematical form

V.v=0, (2.1)

=o, (2.2)

where v denotes the velocity field and tr the Cauchy stress tensor. These statements are the

conservation of mass and momentum, respectively. For a Newtonian fluid, the extra stress

tensor T and rate of deformation tensor D are related by

T = 27/D, (2.3)

where 77 is a material constant. For an incompressible fluid, the motion of the continuum

determines the stress tensor up to an arbitrary isotropic tensor and thus _ and T are related

as follows

tr = -pI + T, (2.4)

where p is an arbitrary pressure and I is the identity tensor.

If we define a stream function ¢ by

0¢ 0¢
_- -- V-7- ----

Oy ' Oz'

then (2.1) is satisfied identically. Substitution of T from (2.3) into (2.4) and then substitution

of cr from (2.4) into (2.2) results in the equation

-Vp + 2_/V D = 0. (2.5)

The pressure may be eliminated by taking the curl of (2.5) to give a biharmonic equation

for the stream function

V4¢ = 0. (2.6)

Consider Stokes flow through the constricted channel defined by IY[ = l(x < 0), [y[ =

a(x > 0) and x = 0(a < ]y] < 1). The line y = 0 is an axis of symmetry and so only the



upper half of the channel needs to be considered. We assume Poiseuille flow at entry and

exit which, in terms of the stream function, is defined by

¢(x,v) --, a(v) as _ --, -oo, 0 < v < 1,

¢(x,y)_a(y/_) as _-,oo, 0_<_,<__

where G(y) = ½Y(3 - y2). Along the channel walls we have no-slip boundary conditions.

The flow region is truncated on entry and exit at distances h and k from the origin,

respectively. These lengths are chosen to be sufficiently large so that the flow is fully devel-

oped in the entry and exit sections. In addition, we impose that the normal derivatives of ¢

vanishes at entry and exit.

3. Domain Decomposition and Spectral Approximation

The truncated region is divided into three subregions as shown in Figure i. Within

each of the subregions, the solution to the biharmonic equation (2.6) is approximated by

a truncated expansion of Chebyshev polynomials. The solutions are patched by applying

C 3 continuity conditions in a collocation sense across the subregion interfaces. This is the

correct order of weak continuity for this problem. With a judicious choice of collocation

strategy we show that the approximations are pointwise C o and C 1 continuous across the
interfaces.

In region I ¢(x,y)is approximated by Cz(x,y) where

Mx Nl

a,,,,_P,_(x)O,(y).¢'(_,y) = a(y) + _ _ ' '
ram2 n=2

(3.i)

The functions P_(x), Q_(y) are suitable linear combinations of shifted Chebyshev polyno-

mials chosen so that Cx(z, y) automatically satisfies the boundary conditions on :r. = -h(a <_

y _< 1) and y -- l(-h _< x < 0). After a little computation we can show that

P_(x) = T_(z) + d,,T{(x.) + flIToZ(X), 2 < m < MI,

where TI,,(x), 0 < m < M_r, are the shifted Chebyshev polynomials on [-h, 0] defined by

T_(x) .2x += T,,_( _ h),

and z ia,_, f/_ are given by

(-i) _-_2, _i (-i)_( -_2 i), _ < m < M_.

Similarly, we can show that

-/ "IG(y) = T._(y)+ a_¢[(y) + _.Tg(y), 2 < _ <__g_,

where 2Pd(y), 0 < n <_ N_, are the shifted Chebyshev polynomials on [a, 1] defined by

1-a

3



and -z "Ia,, _ are given by

-I "I _--. _o2O/n = --n 2, _ -- 1.

In region II, the stream function is approximated by CH(z,y) where

MII NIl

¢"(x,y) a(y) + E E " ,t= b,,,,P,:(x)O.(y).
'rn -----2 .=2

(3.2)

Since regions i and ii share the boundary y = a(-h _< x < 0) and we wish the approxi-

mations to be conforming, we choose Mix = Mr. Further, since CH(z, y) satisfies the Same

boundary conditions along z = -h as Cx(z,y) we take P_Z(x) = P_(z). As for the y-

direction, we define the functions Q_t(y) so as to satisfy the conditions along the axis Of

symmetry. Accordingly Q_Z(y)is defined by

e_'(y) =_2(v) + a_'_:x(y)+ 3_'f0't(v), 2 < n <Ntt,

where _2Z(y), 0 < n _< NH, are the shifted Chebyshev polynomials on [0, a] defined by

_/,'(Y)= T,,(2Y- '_) ,,_

and :IX _XI_. , p. are given by

- xt 1a,_ -- 12(-1)"n_(n2- 1), /_z= --(-1)" + (-1)"n2(n 2- 1), 2 < n< NH.

In region III, the stream function is approximated by cHt(z,y) where

Mill NIlz

= _.P_ (_)O. (y).
m----2 n=4

(3.3)

The functions P_H(x), Q_H(y) axe suitable linear combinations of shlftedChebyshev poly-

nomials chosen so that CHx(x,y) automatically satisfies the boundary conditions on y =

0(0_<x<k), y=a(0_<x_<k) andx=k(0_<y_<a). As before, we can show that

,olIImlllz x
P_ZZ(x) = T_H(x) + a_'T[H(x) + pC, .t 6 (x), 2 < m < MzH,

where T_H(x), 0 < m <_ MxH, are defined by

and - ttt oltt_zm ,Pm are given by

ttt _XXl = m 2 _ 1.am = --m2, ,-rn

Since we wish to have polynomials of the same order on both sides of the interface x = 0(0 <

y < a) we choose Nm = Ntz. The polynomials Q_XX(y) are given by

~ IIIr_III; x
Q_H(y) : _,_H(y) + a, .t a tY) + _H_gH(y) + ._H¢[.r,(y) + _HT_0m(y), 4 _< n _< Nm,

=-



where

xzz
n

0 < n < N,,I, and

1
_2[--n2- i(-i + (-I)n) + 5(-l)"n2(n2-- l)l,

_IfI ,_ ~ fit l 1),

7,, =-an + + (-1)-),

_IX=_l -IH _HI -III

4. Collocation Strategy

The coefficients in the series expansions (3.1) - (3.3) are determined by collocating the

differential equation at certain points in the domain and the solution in the three subregions

are patched by imposing the correct order of weak continuity across the subregion interfaces.

The points at which the extreme values of the Chebyshev polynomials are attained are well

known to give rise to optimal approximation properties of smooth functions. Therefore, we

choose the points corresponding to the Chebyshev polynomial of highest degree used in the

solution representations as our collocation points in both the x- and y-directions. Thus, in

region I, for example, the collocation points are given by

where

z h(zi - 1) , (1 - a)y i + 1 + a
x_ - 2 ' YJ = 2 '

iTf

= - cos(x),

yj = - cos( ),

0<i< MI,

O<j<Nx.

Boundary conditions

Due to the choice of modified Chebyshev polynomials as trial functions in the expansions

(3.1) - (3.3) the boundary conditions are automatically satisfied except along x = 0(a < y

1). Along this part of the boundary there are N1 + 1 collocation points. We deduce from

(3.1) that ¢ and ex are polynomials of degree NI along z = 0(a < y < 1) each depending

on NI - 1 degrees of freedom. Therefore, collocation of ¢ and ex at N1 - 1 distinct points

ensures that the boundary conditions along z = 0(a __ y < 1) are satisfied identically. We

collocate these conditions at the points (O,y_),j = 0,...,NI - 2.

Interface continuity conditions

Let us first examine the interface y = a(-h < a < 0) between subregions I and II. We

impose C a continuity of the stream function across this interface, i.e.,

0 ¢I Ok¢H
Oy k (z,a) - Oy k (x,a), k = 0,1,2,3, -h < z < 0. (4.1)



Now ez and eH arepolynomials of degree Mz along y = _ each possessing Mz - 1 degrees

of freedom. We may write the condition (4.1) with k = 0 as

a_,Q_(a)- _ b,,,,Q_Z(a) P_(m) = 0.
n--=L.=2 .--2

(4.2)

We want to collocate at a sufficient number of points to ensure that (4.2) is satisfied identi-

cally in which case ¢ is pointwise continuous across the interface between subregions I and

II. Equation (4.2) is collocated at the points (x_, a),i = 2, 3,-.., Mz - 2. A further two

conditions are required to ensure (4.2) is an identity. Therefore, in addition, we collocate

the following conditions

= 0. (4.a)¢"(o, 1,

Similarly, continuity ore v is obtained by collocating (4.1) with k = i at the points (x_z, a),i =

2, 3,..., Mz - 2, as well as the conditions

a¢" 02¢Z
0y (0, a) = 0, cOxay(O,a)=O. (4.4)

This results in pointwise continuity of eu across the interface y = a(-h __ x __ 0). _

Now consider the continuity conditions on the second and third derivatives of ¢ across

the interface. We collocate each of the conditions (4.2) with k = 2 or k = 3 at the Mz - 3

points (m_, a),i = 2, 3,..., Mz - 2. Thus, these derivatives are not pointwise continuous

across the interface. Moffatt [9] shows that the leading singular term in the expansion of_¢

about the corner (0, a) is 0(r a) where A = 1.5445 and so it would be inconsistent to impose

continuity of these higher derivatives.

The same collocation strategy is applied across the interface x = 0(0 __ y (_ a) between

subregions lI and III. As a result the stream function and its normal derivative are pointwise

c6n_nuous-acr0ss the interface whereas the second and third derivatives of ¢ are continu-

ous 0nIy at-the coii0cation points (0,y_z),j = 2,3, .., Nn - 2. In addition all tangential

derivatives of _b and _ are pointwlse continuous across the interface.

:The biharmonic equation is collocated in each subregion at all points on the collocation

grid with theexcept!on of those on or one in from each subregion boundary, i.e.,

k k
(x_,yj), i=2,..., i_-2, j =2,..., Nk-2,

m

f__-
E
i

for k I, II, and III.

When the spectral collocation equations resulting from the boundary conditions, interface

continuity conditions and differential equations are added together, they yield a total of

[(Mz- 1)(Nz - 1) + (Mn- 1)(NzI - 1) + (Mnz- 1)(Nnz-3)] linear equations which is equal

to the number of unknown coefficients am,, bin, and c_,. Therefore, provided the coefficient

matrix is non-singular, this system of equations possesses a unique solution.

E

==



The spectralrepresentationswe use ((3.1)-(3.3))are constructedto automatically satisfy

some of the boundary conditions.It ispossibleto construct a collocationscheme in which

the basis functions satisfynone of the boundary conditions but which resultsin the same

scheme. This has the advantage of being more flexible but requiring the solution of a slightly

larger linear system of equations.

In subregion I, for example, we represent ¢ in the form

M N

¢'(_,y) a(y) + _ _ ' "= a,,,,T:,,(x)T,_(y). (4.5)
m=0n=0

Satisfaction of the boundary conditions along z = -h(a < y < 1) at the collocation points

(-h,y_),j = O, 1,..., Nz leads to the following sets of equations:

}_E(-1)_a_." ' (4.6)T_(yj) = O, O < j < Nz,
n=O m=O

- T_,(yi) = O, 0 < j <_ NI. (4.7)
n=O I,m=O

In effect, we are collocating a polynomial of degree Nz at Nz + 1 points and therefore since

we are equating it with the zero polynomial, its coefficients must be zero, i.e.,

Ml

_'-] (- l)'_am,_ --0,
m=O

0 < n < Nz, (4.8)

MI

_(-_)"_a,,,,,=o, O<,_<N,.
rn=O

We may eliminate aon and aln from (4.8) and (4.9) to obtain

(4.9)

MI M1

ao.= _(-I)_(._ _- 1),,_,,, al. = _ (-1)',_a.,.,
rn:2 trim2

O<_n<N1.

Thus, we may write (4.5) in the form

Mx Nz

¢'(_,y) = a(y) + _ _ ' "'a,,,.,P_,(_)T_.(y),
rn:2 n:O

(4.10)

where P_Z (x)is defined in Section 3.

The boundary conditions along y = l(-h < x < 0) leads to
=

Z: am. e_'(_)= o,
m=2

(4.11)

E n'aran PZm(X) = O. (4.12)

7



We collocate (4.11) and (4.12) at the collocation points (x_,l),i = 2,3,...,Mir. As
before, the coefficientsin (4.11) and (4.12) must be zero when collocated at these points,
i.e.,

NI

_-':a,_,=O, 2<_m<_Mi, (4.13)
n=O

n2a,_,_ = O, 2 <_ m <_ Mx. (4.14)
n--0

Again, we may eliminate a,_0 and a,.,,1,2 <_ m <_ M_, from (4.13) and (4.14) to obtain

NI NI

a, o= - = - (4.15)
n----2 n=2

Substitution of (4.15) into (4.10) results in the approximation (3.1). Thus, we have shown

the equivalence of the two expansions (3:1) and =(4.5) in subregion I when an appropriate

collocation strategy is chosen for the boundary conditions. We may show a similar result in

the other two subregions.

5. Method of Solution

We describe the capacitance matrix technique [1, 15] for efficiently inverting the linear

system of equations derived in the previous section. It is important to incorporate the

underlying matrix structure into the solution procedure so that not only do we have an

efficient method but also one which is able to solve a large problem without running into
storage problems.

The spectral domain decomposition method described in this paper gives rise to a block

matrix whose blocks are either full or zero. The full problem may be solved directly, but this

process would not be efficient in terms of the number of storage locations and computational

time. The linear system of equations for the unknown coefficients is written in the partitioned
form

A1 0 0 A4 0

0 B2 0 B4 B5

o o c3 o cs
D1 D2 0 D4 Ds

0 E2 E3 E4 Es

Xl

X2

X3

_g4

X5

p

q
= 0

0

r

(5.1)

The first three blocks of rows correspond to collocation of the biharmonic equation and

boundary conditions in subregions I, II, and III, respectively. The last two blocks of rows cor-

respond to the interface continuity conditions between subregions I and II and subregions II

and III, respectively. The square matrices A1, B2, C3, D4, and E._ are of orders nl, n2, n3, 2n4,
and 2ns, respectively, where

7"1"1 : (NI -- 4)(Mx - 4) 4- 2(Nz - 2),

n2 = (NH -- 4)(MH -- 4) 4- 4,

n3 = (NH, - 4)(MxH - 4),

8



-4 = 2(M - 4),

ns = 2(N,_zI - 4).

The vectors xk are just a partition of the vector of unknown expansion coefficients in the

three subregions.

In the capacitance matrix method, we write (5.1) in the natural component form sug-

gested by the partitioning
AlZl + A4x4 = p (5.2)

B2x2 + B4x4 + Bsx5 = q (5.3)

C3z3 + Cs=5 = 0 (5.4)

Dlxl + D2x2 + D4x4 + Dsxs = 0 (5.5)

E2x2 + E3x3 + E4x4 + Esxs = r. (5.6)

We write xl, x2, and x3 in terms of x4 and xs by premultiplying (5.2), (5.3) and (5.4) by the

inverses of A1, B2, and C3, respectively provided they exist, i.e.,

• 1 = A'llP - A1-lA4x4, x2 = B_lq - B21B4x4 - B_lBsxs,

•3 = -C ICsz5.
(5.7)

Eliminating xl, x_., and x3 from (5.5) and (5.6) we obtain the following system for x4 and xs.

(D4 - D_A_A4 - D2B_IB4)x4 + (D5 - D2B_Bs)x5 = -D_A_lP - D2B_lq,

(E4 - E_B;IB4)x4 + (E5 - E2B;1B4 - E3C_Cs)x5 = r - E2B_q.

(5.8)

The system (5.8) is one of order 2(n4 + ns) and can be solved efficiently since it is much

smaller than the original system. The coefficient matrix of this system is known as the

capacitance matrix. We solve (5.8) simultaneously for z4 and zs and then determine zl, z2,

and x3 from (5.7). Whenever a system of equations needs to be solved in this method, we

use a Crout factorization technique from the NAG Library [11].

The following algorithm describes how efficiencies can be made in the solution procedure.

Algorithm

(1) Calculate A_IA4 and Ai-l_p by solving a system of the form

A_[W_Ivl] = [A41p]. (5.9)

Exploit the fact that A4 has only n4 nonzero columns, and therefore we need only solve a

system with n4 + 1 right-hand sides. Similarly, we calculate B_IB4, B_IBs, B2q, and C_ICs

carefully exploiting any zero columns that B4, !?_ or C5 may possess by solving the systems

B2[W21W3]v2] = [B4IBslq], (5.10)

c [w4]= jell. (5.11)

9



(2) Evaluatethe entries in the capacitancematrix:

I D4 - DIW1 - D2W2E4 EaW2
Ds - D2W3 ]

Es - E, W2 E3 W4 ]
and the right-hand side:

T -- ._2V2

again exploiting any zero columns in W1, Wa, Wa and W4.

(3) Solve the capacitance matrix system (5.8) for x4 and xs.

(4) Evaluate xl, z2, and z3 by substitution of x4 and x5 in (5.7).

The majority of the work in this algorithm lies in Steps (1) and (3). In Step (1) the

solution of the linear systems (5.9), (5.10), and (5.11)requires kn_ + n_(n4 + 1), kn_ + n_(2n4 +

ns) and kn_ + n](ns + 1) operations, respectively. The Solution of the capacitance matrix

system requires 8k(n_ + ng) + 4(n_ + rig) operations. The solution of the full system (5.1)

would require kN a + N 2 operations where N = nl +ha +ha + 2(n4 +ns). Thus, the use of the

capacitance matrix technique has effected savings of 0(n_(na + ha)+ n_(n, + ha)+ n](nl + ha)).

6. Numerical Results

Numerical experiments are performed for Stokes flow through a 4:1 contraction geometry,

i.e., a = _.1 We examine the convergence of the approximations as the degree of the trial
functions is increased and also the performance of the capacitance matrix method for solving

the spectral collocation equations. As in [6, 15], we choose truncation parameters h = 1.5

and k = 0.5.

To verify the convergence of the approximations (3.1) - (3.3), we give contour plots of

the stream function for different numbers of degrees of freedom. In all of these plots, we

have Mz -- MH = MHI = 14. In the y-direction, we choose NI = Nil = 12, NI = NIt, = 16

and N1 - NII - 20 in Figures 3, 4, and 5, respectively, with Nix,, = 8 in all cases. The

smoothness of the contours improves as the number of degrees of freedom is increased. Notice

also the continuity of the stream function across the subregion interfaces which is a result of

the conforming discretization that we use.

The contours appear a little ragged, especially those defining the vortex in the salient

corner. This is due to the contouring routine. Although we obtain a global approximation,

the NAG routine for contouring a continuous function fails because of sharp charges in the

gradient of the solution in the recirculation region. To overcome this, a uniform mesh is

placed over the domain and a NAG routine interpolating the values Of the solution at these

points is used.

The stream function plot in Figure 5 obtained with a total of 571 degrees of freedom is

in qualitative agreement with those in [8] which are obtained using a finite element method

with as many as 1326 degrees of freedom. A significant improvement is also observed over the

authors' previous work [5, 15] in the continuity achieved across the subregion interfaces which

indicates the advantage of using a conforming spectral collocation strategy. The contour plot

10
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of the vorticity is given in Figure 6. This is obtained by differentiating the stream function

shown in Figure 5.

In Table I, we compare the direct inversion of (5.1) with the capacitance matrix method

in terms of CPU (Amdahl 5890 - 300) time and required storage in Mbytes for different

numbers of degrees of freedom. In this comparison, we choose Mz =Mtx = Mm = Nz =

NH = NIH. From the table, we note that the capacitance matrix method becomes more

efficient as the number of degrees of freedom increases in terms of both storage requirements

and computational effort. Alternatively, with a given storage limit, one may solve, using

the capacitance matrix method, a problem using many more degrees of freedom than by the

original method which inverts directly the linear system (5.1).

7. Conclusions

A spectral domain decomposition method is described for solving Stokes flow in a channel

contraction using the stream function formulation. Spectral approximations are constructed

and a collocation strategy devised so that the subregions are conforming. The resulting ap-

proximations and their normal derivatives are pointwise continuous across subregion inter-

faces. The trial functions in these representations are chosen to satisfy some of the boundary

conditions. An alternative collocation method in which the trial functions do not satisfy any

of the boundary conditions is shown to be equivalent to the former strategy.

Efficient direct methods based on the capacitance matrix technique are used to solve the

resulting system of linear equations for the expansion coefficients in the three subregions.

Economies are made ill terms of storage and computational effort over the original method.

This solution procedure can be applied to any rectangularly decomposable domain.

In previous work [6], the use of nonconforming subregions in the solution of the Navier-

Stokes equations led to a breakdown in convergence at Reynolds numbers above 200. We aim

to use the new conforming subregions to extend the range of Reynolds numbers for which

the method converges and this will be reported in a future paper.

Table 1. CPU (Amdahl 5890-300) times in seconds and storage in Mbytes required for

solving the 4:1 contraction problem for different numbers of degrees of freedom.

Mx Degrees of Freedom Original Method Capacitance Matrix

time mbytes time mbytes

9 176 1.35 0.97 1.44 0.94

11 280 2.57 1.35 1.99 1.19

13 408 5.89 2.06 3.40 1.54
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Figure 3. Stream function contours of the 4:1 problem with 363 degrees of freedom.
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Figure 4. Stream function Contours of the 4:1 problem with 467 degrees of freedom.
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Figure 5. Stream function contours of the 4:1 problem with 571 degrees of freedom.
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